A Mathematical Model for Tumor Cell Population Dynamics Based on Target Theory and Tumor Lifespan

نویسندگان

  • Amin Oroji
  • Shantia Yarahmadian
  • Sarkhosh Seddighi
  • Mohd Omar
چکیده

Radiation Therapy (XRT) is one of the most common cancer treatment methods. In this paper, a new mathematical model is proposed for the population dynamics of heterogeneous tumor cells following external beam radiation treatment. According to the Target Theory, the tumor population is divided into m different subpopulations based on the diverse effects of ionizing radiation on human cells. A hybrid model consists of a system of differential equations with random variable coefficients representing the transition rates between subpopulations is proposed. This model is utilized to simulate the dynamics of cell subpopulations within a tumor. The model also describes the cell damage heterogeneity and the repair mechanism between two consecutive dose fractions. As such, a new definition of tumor lifespan based on population size is introduced. Finally, the stability of the system is studied by using the Gershgorin theorem. It is proven that the probability of target inactivity post radiation plays the most important role in the stability of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GRUNWALD-LETNIKOV SCHEME FOR SYSTEM OF CHRONIC MYELOGENOUS LEUKEMIA FRACTIONAL DIFFERENTIAL EQUATIONS AND ITS OPTIMAL CONTROL OF DRUG TREATMENT

In this article, a mathematical model describing the growth orterminating myelogenous leukemia blood cancer's cells against naive T-celland eective T-cell population of body, presented by fractional dierentialequations. We use this model to analyze the stability of the dynamics, whichoccur in the local interaction of eector-immune cell and tumor cells. Wewill also investigate the optimal contro...

متن کامل

Mathematical Modeling and Lyapunov-Based Drug Administration in Cancer Chemotherapy

In this paper a new mathematical model is developed for the dynamics between tumor cells, normal cells, immune cells, chemotherapy drug concentration and drug toxicity. Then, the theorem of Lyapunov stability is applied to design treatment strategies for drug protocols that ensure a desired rate of tumor cell kill and push the system to the area with smaller tumor cells. Using of this theorem a...

متن کامل

Two Dimensional Mathematical Model of Tumor Angiogenesis: Coupling of Avascular Growth and Vascularization

Introduction As a tumor grows, the demand for oxygen and nutrients increases and it grows further if acquires the ability to induce angiogenesis. In this study, we aimed to present a two-dimensional continuous mathematical model for avascular tumor growth, coupled with a discrete model of angiogenesis. Materials and Methods In the avascular growth model, tumor is considered as a single mass, wh...

متن کامل

Mathematical Modeling for Homogeneous Tumor with Delay in Time

Due to the properties of tumor cell, the tumor establishes itself in the organ and grows there, so there is a competition between the tumor cells and host cell (normal cells) for nutrients. Evidences show that high dietary phosphorus increases the rate of protein synthesis and thus the cell number. So, other than oxygen, sulfur, the important element that both tumor cells and normal cells need ...

متن کامل

Reinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic

In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018